

Dyes and Pigments 74 (2007) 477-482

New *meso* substituted cyanine dyes in the 2-R-5*H*-[1,2,4]triazolo[5,1-*a*] isoindole series

Z.V. Voitenko a,*, A.I. Kysil' a, J.G. Wolf b

^a Department of Organic Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, Kyiv 01033, Ukraine ^b Synthèse et physicochimie de molecules d'intérêt biologique, UMR 5068, Université Paul Sabatier, 118 route de Narbonne,

F-31062 Toulouse cedex 9, France

Received 21 February 2006; accepted 21 March 2006 Available online 13 June 2006

Abstract

meso-Substituted symmetrical monomethine cyanine dyes derived from the triazoloisoindole were obtained by reaction of 2-R-5*H*-[1,2,4]triazolo[5,1-*a*]isoindoles with acyl chlorides. The meso group can be varied in a wide range enhancing the interest of these dyes like biological probes. Spectral UV—vis properties are reported.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Triazoloisoindole; Cyanine dyes; Acylation reactions; Synthesis; UV-vis

1. Introduction

While the chemistry of simple isoindoles is well-studied [1–5], a little is known about fused isoindoles containing a nodal nitrogen atom, in particular, triazoloisoindoles presented here. These compounds are not explored systematically [6] despite of their importance for heterocyclic chemistry as synthetic intermediates, as well as their particular biological and physical properties [7–16]. In synthesis, only one reaction of alkylation, cyanoethylation, by interaction with isocyanates and isothiacyanates, and a reaction of acylation for two compounds are described [17,18].

To the best of our knowledge, apart from our previous work [19], no *meso* substituted mono or trimethine derivatives are known in the triazolo or tetrazoloisoindole series.

Thus, following our recent results the present report deals with a new synthetic method of the *meso*-substituted monomethinecyanines in the triazoloisoindole row. This allows introduction of different alkyl, aryl and heteroaryl substituents at the methine group.

E-mail address: z voitenko@mail.univ.kiev.ua (Z.V. Voitenko).

2. Results and discussion

The aim of our work is the systematic investigation of the reaction of acyl derivatives with triazoloisoindoles. In this area, we are mainly interested about the possibility to form monomethinecyanine dyes under the acylation reaction conditions as it was the case with tetrazolo[5,1-a] isoindole [18].

In the triazolo series, only one acyl derivative \mathbf{I} is reported [16,17], obtained from 2-phenyl-1-methyl-5H-[1,2,4]triazolo [5,1-a]isoindole \mathbf{II} perchlorate by action of acetic acid anhydride in DMF (Scheme 1).

The choice of the triazoloisoindole is due to the fact that owing to reactivity indexes, triazoloisoindole must be one of the most active azoloisoindoles [20]; moreover, this system also enables a variation of the substitutions in two sites of the triazole ring.

To introduce a wide range of R substituents (see Table 1), we used the more available acyl chlorides instead of carboxylic acid anhydrides, and we began to utilize the related quaternary salt \mathbf{H} instead of the hard-to-reach and unstable triazoloisoindole $\mathbf{H}\mathbf{I}$. We tried multiple conditions for the acylation by varying the solvent and reactants (dioxane + K_2CO_3 , dioxane + Et_3N , pyridine), but in most cases the new cyanine dyes \mathbf{IV} were formed (Scheme 2).

^{*} Corresponding author.

Scheme 1. Synthesis of acyl derivative I.

We observed that the ease to isolate the final products depends on the ratios of starting materials and some regularity can be disclosed. At a molar ratio [starting salt:acyl chloride:triethylamine, 1:1:1], the dye is formed in interesting amount, but some unreacted salt remains impeding the separation of **IV**; in the case of the ratio 2:1:1 less quantity of dye is formed and much unreacted salt remains; at mixing ratio 1:1:3 or 2:1:3 significant oily residues are observed. Thus, the ratio 1:1:2 seems preferable. Easy dye isolation also depends on the nature of the anion; the best results were obtained for the perchlorate salts.

The nature of R also influences the reaction. The isolation of the acylated product **I** was successful only for **Ia** (R = 4-Br-phenyl; $R^1 = Me$; $R^2 = 4$ -Br-phenyl) and **Ib** (R = 2-furyl; $R^1 = Me$; $R^2 = Et$). In the other cases, dyes **IVc**, **d** were obtained with significant yields. If R is aromatic or heteroaromatic, the yield of cyanine dyes increases, mainly with the presence of a para electron-donor substituent. But in this case it is difficult to isolate the acylated products. Quaternary salts **II** with R = 1-naphthyl, 5-NO₂-furan, 5-Br-furan lead to resin formation, which hinders the isolation of final products. Acyl chlorides with electron-acceptor substituents significantly decreases the yield of dyes **IVf**, **p**.

All separated products were characterized by the usual physicochemical methods (see Section 4) but we will emphasize hereafter some UV—vis properties (Table 1).

At each λ_{max} is associated a hypsochromic shoulder between 34.5 and 47.5 nm (Table 1). Following the literature [21] this fact may be related to aggregates or vibrational and rotational additional transitions. To try to understand the nature of these bands, we made some dilution experiments with products IVc, d and g in ethanol, acetonitrile and methylene chloride. In all cases except one, the Beer-Lambert law was strictly respected (Fig. 1). The deconvolution of the experimental curves shows that the two band surfaces ratio is constant and near from 10/90. We found only one exception with compound IVd in acetonitrile. In this case, we observed a nonlinear variation of the peak surfaces ratio, mainly due to the shoulder one. In our concentration range $(5.26-0.5\times$ $10^{-5} \,\mathrm{M\,I^{-1}}$) the ratio varied from 15/85 to 10/90. This effect may be due to the presence of the R² anisyl group but this assumption is not supported by any previous result.

Thus the aggregates hardly can be the reason for the dissymmetry in the charge distribution and therefore for the shoulder which is insensitive to solvent dilution [22].

Finally, we observed for all the **IV** compounds only moderate solvatochromic effects, i.e. the bathochromic shifts referred to acetonitrile are always lower than 4 nm with toluene and methylene chloride. The only noticeable fact is the presence of an important new band for **IVd** in toluene (Do = 0.45, λ = 520 nm) as compared to the λ_{max} band (Do = 0.4, λ = 584 nm) which may be the indication of a specific interaction (perhaps an aromatic π - π stacking between the ending heterocycles and the toluene).

3. Conclusion

Finally, we propose a new, simple and efficient method for the synthesis of meso-substituted cyanine dyes IV, with a large range of substituents R^2 . We will take advantage of this to introduce functional groups for the grafting with products of biological interest or to enhance their solubility in water. This work also demonstrates the ability of another type of azoloisoindole to react with acyl chlorides giving previously unreachable dyes.

4. Experimental

4.1. General methods

The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra (400 and 100 MHz) were recorded with a Varian Mercury 400 with TMS as an internal standard.

The UV-vis spectra were recorded on a Perkin-Elmer Lambda-19 spectrophotometer equipped with a 60 mm integration sphere for solid measurements; the deconvolution of the spectra was performed with the GRAMS program from Thermo Products.

The electrospray mass-spectra were recorded on an API-365 Perkin—Elmer Sciex at the "Service Commun de Spectrométrie de Masse" of the Paul Sabatier University, Toulouse.

Elemental analysis was realized with a Carlo Erba Strumenization analyser.

Table 1 UV—vis characteristics (λ_{\max} , $\lambda_{\text{shoulder}}$ in nm, $\log \varepsilon$) for compounds **IVa—t** in acetonitrile

Ashoulder Ashoulder Ashoulder	IV	R	R ¹	\mathbb{R}^2	$\lambda_{ m max}$	$\log \varepsilon$
CH ₃ CH ₂ CH ₃ 571.0 4.9 531 4.72 538 4.76 600.4 4.81 6.6 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3						
b	a		CH ₃	CH ₃	570.5	5.1
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ S81.3		~o^			538	
C	b		CH_3	CH_2CH_3		4.9
CH ₃ CH ₃ CH ₃ CH ₃ SS81.3 4.72 E CH ₃ CH ₃ SS84.5 SS84.7 SS84.7 SS84.9 SS8		- \ ₀ '	ar.			
d ✓o CH ₃ ✓o S81.3 4.72 e ✓o CH ₃ ✓o F 584.5 4.76 f ✓o CH ₃ ✓o F 592.1 – g ✓o CH ₃ ✓o 5663 + 4.81 h ✓o CH ₃ ✓o 5663 + 4.75 i ✓o CH ₃ ✓o 592.7 4.75 j ✓o CH ₃ ✓o 595.8 4.71 j ✓o CH ₂ CH ₃ ✓o 585.8 4.76 k ✓o CH ₃ ✓o 554 4.71 l ✓o CH ₃ ✓o 554 4.71 l ✓o CH ₃ ✓o 554 4.72 m ✓o CH ₃ ✓o 554 4.80 n H ₃ C-N CH ₃ CH ₃ 597.1 4.80 p ✓o CH ₃ CH ₃ 595.2 – r CH ₃ CH ₃ 506.2	С		CH_3	——————————————————————————————————————		5.11
CH ₃ CH ₅ CH ₅ CH ₆ CH ₇ CH		0	CH			4.70
CH ₃ CH ₅ CH	a		CH_3	—		4.72
f			CH			176
f ✓₀ CH ₃ ✓₀ F 592.1 - g ✓₀ CH ₃ 600.4 4.81 h ✓₀ CH ₃ 563 4.75 i ✓₀ CH ₃ 592.7 4.75 i ✓₀ CH ₃ 595.8 4.71 j ✓₀ CH ₂ CH ₃ 585.8 4.76 k ✓₀ CH ₃ 601.4 4.71 l ✓₀ CH ₃ 593.3 4.72 m ✓₀ CH ₃ 593.3 4.72 m ✓₀ CH ₃ 584.9 4.80 n H ₃ C-N CH ₃ CH ₃ 584.9 4.80 n H ₃ C-N CH ₃ 577.6 - o CH ₃ CH ₃ 597.1 4.80 p ✓₀ CH ₃ 597.1 4.80 r CH ₃ CH ₃ 595.2 - r CH ₃ CH ₃ 566.2 4.67 s CH ₃ CH ₃ 570.0 4.75	е		СП3	F		4.70
CH ₃ CH ₃ CH ₃ CH ₃ Sp2.7 Sp2.7 Sp5.8 Sp6.8 Sp7.6 Sp7.6 Sp7.6 Sp7.6 Sp7.6 Sp7.6 Sp7.1	f	()	СН	<u> </u>		
g CH ₃ 600.4 4.81 h CH ₃ 592.7 4.75 i System 595.8 4.71 j CH ₂ CH ₃ 595.8 4.76 k CH ₂ CH ₃ 585.8 4.76 k CH ₃ 601.4 4.71 l CH ₃ 593.3 4.72 m CH ₃ 593.3 4.72 m CH ₃ 593.3 4.72 m CH ₃ 584.9 4.80 n H ₃ C-N CH ₃ 577.6 - c CH ₃ CH ₃ 577.6 - c CH ₃ 597.1 4.80 p B _F CH ₃ 597.1 4.80 p B _F CH ₃ 595.2 - c CH ₃ 566.2 4.67 s CH ₃ 570.0 4.75 c CH ₃ 570.0 4.75 c CH ₃ 581.3 4.66	1		CH3			_
CH ₃ CH ₃ S _{592.7} S ₅₄₈ S _{592.7} S ₅₄₈ S ₅₅₂ S ₅₅₂ S ₅₅₂ S ₅₅₂ S ₅₅₂ S ₅₅₂ S ₅₅₄ CH ₃ CH ₃ CH ₃ S ₅₅₄ S ₅₅₄ S ₅₅₄ S ₅₅₁ S ₅₁ S ₅₁ S ₅₁ S ₅₁ S ₅₁ S ₅₁ S ₅₄₀ S ₅₅₀ CH ₃ S ₅₅₀ S ₅₅₀ CH ₃ S ₅₅₀ S ₅₅₀ CH ₃ S ₅₆₀ S ₅₆₀ S ₅₆₀ S ₅₆₀ S ₅₇₀	α	()	СН	— F F		1 21
i	g		CH3	\mathcal{A}_{o}		4.01
i	h		CH ₃		592.7	4.75
The state of the		~\(\sigma_0\)	3		548	
j	i		CH_3		595.8	4.71
CH ₃ CH ₃ CH ₃ CH ₃ S93.3 CH ₃ S93.3 S51 CH ₃ CH ₃ S84.9 CH ₃ S77.6 CH ₃ S95.2 CH ₃ S95.2 CH ₃ CH ₃ S95.2 CH ₃ CH ₃ CH ₃ C		~o,>			552	
k CH ₃ 601.4 4.71 1 S CH ₃ 554 4.72 m CH ₃ S 593.3 4.72 551 584.9 4.80 n H ₃ C-N CH ₃ CH ₃ 577.6 - o CH ₃ CH ₃ CH ₃ 577.6 - p CH ₃ CH ₃ 597.1 4.80 q CH ₃ CH ₃ 595.2 - r CH ₃ CH ₃ 595.2 - r CH ₃ CH ₃ 566.2 4.67 s CH ₃ CH ₃ 570.0 4.75 t CH ₃ CH ₃ 581.3 4.66	j		CH_2CH_3			4.76
CH ₃ CH ₃ CH ₃ S554 CH ₃ S593.3 S51 M CH ₃ S584.9 S84.9 S84.0 S77.6 CH ₃ S80.2 S97.1 S80.2 S97.1 S80.2 S97.1 S97						
1	k		CH_3	\square		4.71
The control of the c	1	s	CH			4.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		CH ₃			4.72
CH ₃ 540 n H ₃ C-N CH ₃ 577.6 - O CH ₃ 580.2 5.09 c CH ₃ 597.1 4.80 q CH ₃ CH ₃ 595.2 - r CH ₃ CH ₃ 566.2 4.67 s CH ₃ CH ₃ 570.0 4.75 t CH ₃ CH ₃ 66	m	S	CH ₂	S		4.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	***		CII3	—()—CH ₃		1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n		CH ₂			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H ₃ C-N ⁺	5	—()—CH ₃	_	
P CH ₃ CH ₃ 541 P CH ₃ CH ₃ 597.1 4.80 Q CH ₃ CH ₃ 595.2 - T CH ₃ CH ₃ 566.2 4.67 S CH ₃ CH ₃ 570.0 4.75 CH ₃ CH ₃ 581.3 4.66		o=c=o				
P CH ₃ CH ₃ 541 P CH ₃ CH ₃ 597.1 4.80 Q CH ₃ CH ₃ 595.2 - T CH ₃ CH ₃ 566.2 4.67 S CH ₃ CH ₃ 570.0 4.75 CH ₃ CH ₃ 581.3 4.66	0	0	СН		580.2	5.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U	—()—cı	CH3	—()—CH ₃		3.09
q CH ₃ CH ₃ 554 q CH ₃ 595.2 - r CH ₃ CH ₃ 566.2 4.67 s CH ₃ CH ₃ 570.0 4.75 t CH ₃ CH ₃ 581.3 4.66	n		СН			4.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	—⟨ }—Br	CH3			4.60
r CH ₃ CH ₃ 550 r CH ₃ CH ₃ 566.2 4.67 s CH ₃ CH ₃ 570.0 4.75 t CH ₃ CH ₃ 581.3 4.66	a	CH.	CH.	(-)		_
S CH ₃ CH ₃ 570.0 4.75 t CH ₃ 581.3 4.66	Ч	CH3	CH3			
S CH ₃ CH ₃ 530 t CH ₃ CH ₃ 570.0 4.75 t CH ₃ 581.3 4.66	r	CH ₃	\ _	CH ₃		4.67
t CH ₃ 581.3 4.66		J		J	530	
t CH ₃ 581.3 4.66	s	_	CH ₃	CH ₃		4.75
	t		CHa			4 66
	·	F	2113	F		1.00

4.2. General experimental procedure

The starting products **II** and **III** were obtained by known methods [16,17].

4.3. Synthesis of acylated derivatives of Ia-b, f-k and cyanine dyes IVa-t

The products are named by an easy running designation, but we present hereafter one example of systematic IUPAC nomenclature for **IVa**: 2-furan-2-yl-5-[1-(2-furan-2-yl-1-methyl-

1*H*-[1,2,4]triazolo[5,1-*a*]isoindol-5-yl)-ethylidene]-1-methyl-5*H*-[1,2,4]triazolo[5,1-*a*]isoindol-1-ium perchlorate.

To the solution of salt II (0.7 mmol) in 3.5 ml of dioxane, 0.7 mmol of corresponding chloro-anhydride and 1.4 mmol of triethylamine were added. The mixture was heated to $100 \,^{\circ}$ C for 1 h. The unreacted residue of the starting material was filtered off and washed twice with acetone. The combined filtrates were evaporated under reduced pressure and the obtained residue was separated by chromatography (silica gel L 100/250 mesh, eluent — dichloromethane—acetone (3:1)). Two types of products were isolated: acylated derivatives Ia—b and cyanine dyes IVa—t. Yields of acylated derivatives: Ia 76.6%, Ib 6%. Yields of cyanine dyes: from 7.6% (IVf) to 79.8% (IVc). Physical constants: melting point mp, 1 H NMR, chromatographic R_f and UV—vis (nm) data are given hereafter.

4.3.1. Acylated derivative Ia

Mp 201 °C; ¹H NMR δ (DMSO- d_6) 4.172 (s, 3H, N–CH₃), 7.139 (t, 1H, H_{arom}), 7.317 (s, 1H, H_{arom}), 7.606 (m, 4H, H_{arom}), 7.784 (m, 5H, H_{arom}), 8.065 (d, 1H, H_{arom}); R_f 0.83 (CHCl₃/MeOH 9/1, 21 °C); UV–vis (CH₃CN) [λ, (log ε)] 391.75 (4.432). C₂₃H₁₅Br₂N₃O, M is 509.20. M⁺ = 509; Analysis (calcd, found) % C (54.25, 54.30); H (2.97, 3.00); N (8.25, 8.27). Yield: 76.6%.

4.3.2. Acylated derivative **Ib**

Mp 182 °C; ¹H NMR δ (DMSO- d_6) 1.188 (t, 3H, -CH₂CH₃), 3.232 (m, 2H, CH₂CH₃), 4.289 (s, 3H, N-CH₃), 6.779 (m, 1H, furan), 7.087 (m, 1H, H_{arom}), 7.321-7.433 (m, 3H, H_{arom}), 7.984 (m, 1H, furan), 8.333 (d, 1H, H_{arom}); R_f 0.85 (CHCl₃/MeOH 9/1, 21 °C); C₁₇H₁₇N₃O₂, M is 295.34. Analysis (calcd, found) % C (69.14, 69.17); H (4.38, 4.45); N (14.23, 14.25). Yield: 6%.

4.3.3. Cyanine dye IVa

Mp 178 °C; ¹H NMR δ (DMSO- d_6) 3.436 (s, 3H, -CH₃), 4.425 (s, 6H, N–CH₃), 6.841 (m, 2H, furan), 6.956 (m, 2H, H_{arom}), 7.394 (m, 4H, H_{arom}), 7.457 (d, 2H, H_{arom}), 8.072 (s, 2H, furan), 8.333 (m, 2H, H_{arom}); ¹³C NMR δ (DMSO- d_6) 17.58, 33.78, 110.22, 110.63, 112.64, 115.45, 120.80, 120.99, 122.93, 123.12, 129.37, 132.04, 132.58, 134.33, 138.93, 141.14, 146.47, 146.89; R_f 0.46 (CHCl₃/MeOH 9/1, 21 °C); $C_{30}H_{23}N_6O_8Cl$, M is 599.01. Analysis (calcd, found) % C (60.16, 60.19); H (3.87, 3.90); N (14.03, 14.09). Yield: 75.3%.

4.3.4. Cyanine dye IVb

Mp 175 °C; ¹H NMR δ (DMSO- d_6) 1.410 (t, 3H, –CH₂CH₃), 3.750 (m, 1H, –CH₂CH₃), 4.216 (m, 1H, –CH₂CH₃), 4.396 (s, 6H, N–CH₃), 6.859 (m, 4H, H_{arom}), 7.376 (m, 6H, H_{arom}), 8.048 (s, 2H, furan), 8.301 (d, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); C₃₁H₂₅ClN₆O₆, M is 613.03. M⁺ = 513. Analysis (calcd, found) % C (60.74, 60.80); H (4.11, 4.16); N (13.71, 13.78). Yield: 73%.

Scheme 2. Reaction of the 2-R¹-R²-5H-[1,2,4]triazolo[5,1-a]isoindole perchlorate II with acyl chlorides (R, R¹, R² defined in Table 1).

4.3.5. Cyanine dye IVc

Mp 194 °C; ¹H NMR δ (DMSO- d_6) 4.427 (s, 6H, N–CH₃), 6.57 (d, 2H, H_{arom}), 6.65 (m, 2H, furan), 7.064 (s, 2H, furan), 7.241 (t, 2H, H_{arom}), 7.333 (t, 2H, H_{arom}), 7.435 (d, 2H, H_{arom}), 7.531 (d, 2H, H_{arom}), 7.905 (s, 2H, furan), 8.274 (d, 2H, H_{arom}); R_f 0.47 (CHCl₃/MeOH 9/1, 21 °C); C₃₆H₂₇ClN₆O₆, M is 675.11. Analysis (calcd, found) % C (64.05, 64.11); H (4.03, 4.08); N (12.45, 12.50). Yield: 79.8%.

4.3.6. Cyanine dye IVd

Mp 192 °C; ¹H NMR δ (DMSO- d_6) 3.972 (s, 3H, -O–CH₃), 4.425 (s, 6H, N–CH₃), 6.658 (m, 4H, H_{arom}), 7.063 (s, 2H, furan), 7.172 (d, 2H, H_{arom}), 7.265 (t, 2H, H_{arom}), 7.332 (t, 2H, H_{arom}), 7.563 (d, 2H, H_{arom}), 7.898 (s, 2H, furan), 8.278 (d, 2H, H_{arom}); R_f 0.45 (CHCl₃/MeOH 9/1, 21 °C); UV–vis (CH₃CN) 308 (4.06), 406 (3.58), 519* (4.31), 555 (4.80). C₃₆H₂₇ClN₆O₇, M is 691.11. Analysis (calcd, found) % C (62.57, 62.60); H (3.94, 3.98); N (12.16, 12.21). Yield: 73.2%.

4.3.7. Cyanine dye IVe

Mp 195.5 °C; ¹H NMR δ (DMSO- d_6) 4.435 (s, 6H, N–CH₃), 6.601 (d, 2H, H_{arom}), 6.676 (s, 2H, H_{arom}), 7.084 (s, 2H, H_{arom}), 7.283 (t, 2H, H_{arom}), 7.360 (t, 2H, H_{arom}), 7.429 (s, 2H, H_{arom}), 7.706 (s, 2H, H_{arom}), 7.919 (s, 2H, H_{arom}), 8.231 (d, 2H, H_{arom}); ¹³C NMR δ (DMSO- d_6) 34.44, 110.00, 112.17, 113.04, 115.73, 117.45, 121.03, 121.61,

124.02, 129.50, 132.21, 135.19, 135.78, 139.46, 141.91, 146.44, 147.43; R_f 0.44 (CHCl₃/MeOH 9/1, 21 °C); $C_{35}H_{24}ClFN_6O_6$, M is 679.07. M⁺ = 579; Analysis (calcd, found) % C (61.91, 61.97); H (3.56, 3.61); N (12.38, 12.44). Yield: 71.2%.

4.3.8. Cyanine dye IVf

Mp 196 °C; R_f 0.46 (CHCl₃/MeOH 9/1, 21 °C); $C_{36}H_{24}ClF_3N_6O_6$, M is 729.08. Analysis (calcd, found) % C (59.31, 59.36); H (3.32, 3.36); N (11.53, 11.58). Yield: 7.6%.

4.3.9. Cyanine dye IVg

Mp 191 °C; ¹H NMR δ (DMSO- d_6) 4.40 (s, 6H, N–CH₃), 6.67 (s, 2H, furan), 6. 89 (s, 1H, furan), 7.08 (m, 4H, H_{arom}), 7.39 (m, 5H, H_{arom}), 7.90 (s, 2H, furan), 8.09 (s, 1H, furan), 8.28 (m, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); C₃₃H₂₃ClN₆O₇, M is 651.04. M⁺ = 551; Analysis (calcd, found) % C (60.88, 60.91); H (3.56, 3.59); N (12.91, 12.96). Yield: 76.5%.

4.3.10. Cyanine dye IVh

Mp 192.5 °C; ¹H NMR δ (DMSO- d_6) 4.425 (s, 6H, N–CH₃), 6.66 (s, 2H, furan), 6.77 (s, 2H, H_{arom}), 7.07 (s, 2H, H_{arom}), 7.35 (m, 5H, H_{arom}), 7.52 (s, 1H, thiophene), 7.90 (s, 2H, furan), 8.09 (s, 1H, thiophene), 8.31 (d, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); $C_{33}H_{23}CIN_6O_6S$,

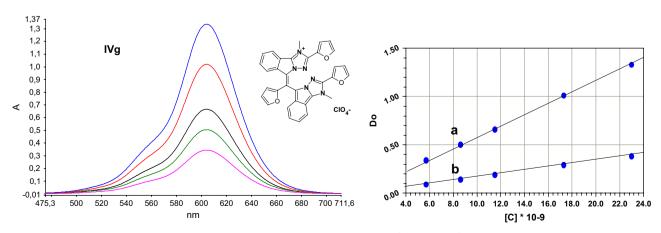


Fig. 1. Compound IVg: UV-vis spectra in dilution in CH₂Cl₂, concentration range: $2.3 \times 10^{-8} - 5.76 \times 10^{-9}$ M. Linear correlation Do/[C] at (a) λ_{max} 587 nm, R = 0.99988 and (b) λ shoulder 540 nm R = 0.99978.

M is 667.10. Analysis (calcd, found) % C (59.42, 59.45); H (3.48, 3.53); N (12.60, 12.64). Yield: 77%.

4.3.11. Cyanine dye IVi

Mp 194 °C; ¹H NMR δ (DMSO- d_6) 4.428 (s, 6H, N–CH₃), 6.617 (s, 2H, furan), 6.689 (s, 2H, H_{arom}), 7.079 (s, 2H, H_{arom}), 7.313 (t, 2H, H_{arom}), 7.394 (t, 2H, H_{arom}), 7.644 (s, 2H, H_{arom}), 7.938 (s, 2H, furan), 8.344 (d, 2H, H_{arom}), 8.830 (s, 2H, H_{arom}); R_f 0.42 (CHCl₃/MeOH 9/1, 21 °C); C₃₄H₂₄ClN₇O₆, M is 662.07. M⁺ = 562. Analysis (calcd, found) % C (61.68, 61.71); H (3.65, 3.71); N (14.81, 14.83). Yield: 69.2%.

4.3.12. Cyanine dye IVj

Mp 194 °C; ¹H NMR δ (DMSO- d_6) 1.678 (t, 6H, N–Et), 4.909 (q, 4H, N–Et), 6.65 (d, 2H, H_{arom}), 6.686 (m, 2H, furan), 6.983 (s, 2H, furan), 7.321 (t, 2H, H_{arom}), 7.396 (t, 2H, H_{arom}), 7.465 (m, 2H, H_{arom}), 7.784 (m, 2H, H_{arom}), 7.933 (s, 2H, furan), 8.28 (d, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); $C_{37}H_{28}FCIN_6O_6$, M is 707.12. Analysis (calcd, found) % C (62.85, 62.87); H (3.99, 4.01); N (11.88, 11.92). Yield: 74.5%.

4.3.13. Cyanine dye IVk

Mp 192.5 °C; ¹H NMR δ (DMSO- d_6) 4.409 (s, 6H, N–CH₃), 6.919 (s, 1H, furan), 7.097 (s, 1H, furan), 7.242 (m, 2H, H_{arom}), 7.422 (m, 5H, H_{arom}), 7.773 (m, 5H, H_{arom}), 8.231 (s, 1H, furan), 8.332 (d, 2H, H_{arom}); ¹³C NMR δ (DMSO- d_6) 34.27, 108.45, 111.88, 114.30, 119.54, 120.96, 121.55, 124.25, 125.13, 129.39, 129.73, 131.68, 132.25, 134.86, 142.16, 147.79, 150.06; R_f 0.46 (CHCl₃/MeOH 9/1, 21 °C); C₃₃H₂₃ClN₆S₂O₅, M is 683.17. M⁺ = 583; Analysis (calcd, found) % C (58.02, 58.05); H (3.39, 3.41); N (12.30, 12.31). Yield: 73.2%.

4.3.14. Cyanine dye IVI

Mp 195 °C; ¹H NMR δ (DMSO- d_6) 4.413 (s, 6H, N–CH₃), 6.803 (m, 2H, thiophene), 7.231 (m, 2H, H_{arom}), 7.333–7.384 (m, 4H, H_{arom}), 7.441 (s, 1H, thiophene), 7.556 (s, 1H, thiophene), 7.768 (m, 4H, H_{arom}), 8.118 (s, 1H, thiophene), 8.332 (d, 2H, H_{arom}); R_f 0.42 (CHCl₃/MeOH 9/1, 21 °C); $C_{33}H_{23}CIN_6S_3O_4$, M is 699.23. M⁺ = 599; Analysis (calcd, found) % C (59.29, 59.31); H (3.32, 3.34); N (12.02, 12.06). Yield: 72%.

4.3.15. Cyanine dye IVm

Mp 194 °C; ¹H NMR δ (DMSO- d_6) 4.426 (s, 6H, N–CH₃), 6.612 (d, 2H, H_{arom}), 7.219–7.360 (m, 6H, H_{arom}), 7.455 (d, 2H, H_{arom}), 7.565 (d, 2H, H_{arom}), 7.770 (m, 4H, thiophene), 8.310 (d, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); C₃₆H₂₇ClN₆S₂O₄, M is 707.24. M⁺ = 607; Analysis (calcd, found) % C (61.14, 61.17); H (3.85, 3.87); N (11.88, 11.91). Yield: 73.8%.

4.3.16. Cyanine dye IVn

Mp 205 °C; R_f 0.35 (CHCl₃/MeOH 9/1, 21 °C); UV-vis (CH₃CN) 309 (3.69), 369 (3.40), 562 (4.26). $C_{40}H_{35}Cl_3N_8O_{12}$,

M is 925.13. Analysis (calcd, found) % C (51.88, 51.93); H (3.81, 3.85); N (12.10, 12.12). Yield: 65.2%.

4.3.17. Cyanine dye IVo

Mp 199 °C; ¹H NMR δ (DMSO- d_6) 4.275 (s, 6H, N–CH₃), 6.576 (m, 2H, H_{arom}), 7.249 (t, 2H, H_{arom}), 7.329 (t, 2H, H_{arom}), 7.465 (d, 2H, H_{arom}), 7.543 (d, 2H, H_{arom}), 7.606 (s, 8H, H_{arom}), 8.257 (d, 2H, H_{arom}); R_f 0.44 (CHCl₃/MeOH 9/1, 21 °C); C₄₀H₂₉Cl₃N₆O₄, M is 774.07. M⁺ = 665; Analysis (calcd, found) % C (62.88, 62.93); H (3.83, 3.85); N (11.00, 11.02). Yield: 64.5%.

4.3.18. Cyanine dye IVp

Mp 203 °C; ¹H NMR δ (DMSO- d_6) 4.266 (s, 6H, N–CH₃), 6.926 (s, 1H, furan), 7.074 (s, 1H, furan), 7.414 (m, 4H, H_{arom}), 7.542 (m, 4H, H_{arom}), 7.743 (m, 6H, H_{arom}), 8.111 (s, 1H, furan), 8.295 (d, 2H, H_{arom}); R_f 0.43 (CHCl₃/MeOH 9/1, 21 °C); $C_{37}H_{25}Br_2ClN_6O_5$, M is 821.91. Analysis (calcd, found) % C (53.61, 53.53); H (3.04, 3.07); N (10.14, 10.18). Yield: 24.3%.

4.3.19. Cyanine dye **IVq**

Mp 168 °C; R_f 0.46 (CHCl₃/MeOH 9/1, 21 °C); $C_{27}H_{23}IN_6O$, M is 574.43. Analysis (calcd, found) % C (56.46, 56.47); H (4.04, 4.07); N (14.63, 14.67). Yield: 55.6%.

4.3.20. Cyanine dye IVr

Mp 165 °C; R_f 0.44 (CHCl₃/MeOH 9/1, 21 °C); $C_{36}H_{31}BrN_6$, M is 627.29. Analysis (calcd, found) % C (68.90, 68.92); H (4.98, 5.02); N (13.39, 13.40). Yield: 58.1%.

4.3.21. Cyanine dye IVs

Mp 193 °C; ¹H NMR δ (DMSO- d_6) 3.431 (s, 3H, CH₃), 4.271 (s, 6H, N–CH₃), 7.424 (m, 4H, H_{arom}), 7.682 (m, 6H, H_{arom}), 7.863 (m, 6H, H_{arom}), 8.331 (d, 2H, H_{arom}); R_f 0.42 (CHCl₃/MeOH 9/1, 21 °C); C₃₄H₂₇ClN₆O₄, M is 619.09. Analysis (calcd, found) % C (65.96, 65.99); H (4.40, 4.42); N (13.57, 13.61). Yield: 71.5%.

4.3.22. Cyanine dye IVt

Mp 199 °C; R_f 0.45 (CHCl₃/MeOH 9/1, 21 °C); $C_{39}H_{36}ClF_3N_6O_4$, M is 735.13. $M^+ = 735.2$ Analysis (calcd, found) % C (63.72, 65.97); H (3.56, 3.60); N (11.43, 11.48). Yield: 78.5%.

Acknowledgements

The authors wish to acknowledge the Paul Sabatier University for financial support in the frame of the Toulouse-Kiev co-operation agreement and the French Ministry of Foreign Affairs for A.I. Kysil's thesis cotutelle grant.

References

- Babichev FS, Kovtunenko VA. The chemistry of isoindoles. Kyiv: Naukova Dumka Press; 1983.
- [2] Babichev FS, Kovtunenko VA, Tyltin AK. Usp Khim 1981;50: 2073-105.

- [3] Kovtunenko VA, Voitenko ZV. Russ Chem Rev 1994;63:997-1018.
- [4] Bonnett R, North SA. The chemistry of isoindoles. Adv Heterocycl Chem 1981:29:341–99.
- [5] Kreher RP, Seubert J, Schmitt D, Use G, Kohl N, Muleta T. Chem Ber 1990;123:381–90.
- [6] Voitenko ZV, Yegorova TV, Kovtunenko VA. Khim Geterotsikl Soedin 2002;38:1019-37.
- [7] Houlihan WJ, Eberle MK. U.S. Patent 3,642,814; 1972.
- [8] Galliani G, Lerner LJ. Am J Vet Res 1976;37(3):263-7.
- [9] Galliani G, Lerner LJ. Nature [London] 1975;256:130.
- [10] Lerner LJ. Recent Adv Primatol [Congr Intern Primatol Sci] 1976;4:155[pub. 1978]. C.A., 1979;91:102681u.
- [11] Galliani G, Assandri A. J Pharm Dyn 1982;5:55-8.
- [12] Assandri A. Rev Drug Interact 1982;4:237-41.
- [13] Albrechsten S, Hansten J. PST Int Appl WO 9,417,068; 1994.

- [14] Wade PS, Vogt BR. U.S. Patent 4,076,823; 1978.
- [15] Wade PS, Kissick TP. U.S. Patent 4,093,728; 1978.
- [16] Wade PS, Kissick TP, Vogt BR. J Org Chem 1979;44:84-8.
- [17] Babichev FS, Romanov NN. Visn Kyiv Univ Khim 1977;18:40-2.
- [18] Babichev FS, Romanov NN. Ukr Khim Zh 1981;47:291-4.
- [19] Voitenko ZV, Yegorova TV, Kysil' AI, Wolf JG, Andre C. Tetrahedron 2004;60:195–201.
- [20] Kovtunenko VA, Voitenko ZV, Sheptun VL, Savranskii LI, Tyltin AK, Babichev FS. Khim Geterotsikl Soedin 1989;3:340-6.
- [21] Tyutulkov N, Fabian J, Mehlhorn A, Dietz F, Tadjer A. Polymethine dyes: structure and properties. Sofia: St. Kliment Ohridsky University Press; 1991.
- [22] Kachkovski OD, Tolmachov OI, Slominski Yu L, Kudinova MO, Derevyanko NO, Zhukova OO. Dyes Pigments 2005;64:207–16. and references therein.